Ralph
Cross-platform autonomous AI development with 10+ agents. Deliberate context rotation for long-running tasks on macOS, Linux, Windows, and cloud.
I design and deploy AI that thrives in the real world—where bandwidth is scarce, safety matters, and operations teams need explainable telemetry.
Latest Focus
AI agents, embodied robotics, XR
Stack
Claude Code · Cloudflare · Raspberry Pi · Android XR
Focus Areas
Spatial Computing · AI Agents · Accessibility
Productivity
2,652 commits · 76 projects in 2025
Edge AI drone detection platform
Dronevade is an in-progress platform that couples custom computer vision, RF sensing, and thermal imaging to help wildfire, utilities, and public safety teams detect unauthorized drones in real time.
Edge-ready pipelines
Quantized models, remote updates, observability hooks
Pilot-ready
Site surveys and demo deployments underway with wildfire agencies
Secure architecture
Air-gapped inference + encrypted telemetry
Cross-platform autonomous AI development with 10+ agents. Deliberate context rotation for long-running tasks on macOS, Linux, Windows, and cloud.
Cloud platform for visualizing codebases as cities. AI agent infrastructure with context recovery, session tracking, and decision tracing.
Spatial computing platform for robot control and XR interfaces. Evolved from LiveCaptionsXR with 612 commits in two months.
One brain, many shells—embodied AI for home robotics. Under $600 in parts with shared memory across robot bodies.
Spatial captions for XR platforms that keep deaf and hard-of-hearing users inside the conversation in virtual spaces.
Clear phases keep AI work grounded in measurable outcomes while giving product, engineering, and operations teams full visibility into progress.
Feed user interviews, field studies, and feasibility prototypes into a concise technical charter and ROI model.
Ship iterative releases that pair robust ML pipelines with test harnesses, telemetry, and stakeholder demos.
Operationalize the solution with playbooks, alerting, and continuous feedback loops to keep accuracy high post-launch.
Real-time detection, tracking, and geospatial analytics for mission-critical video.
Model prototyping, MLOps pipelines, and predictive systems aligned to business outcomes.
Deployments on Jetson, Raspberry Pi, and embedded hardware with low-latency inference.